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investigation on a square lattice
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Abstract. The evolution of the mean chain length 〈L〉 and mean end to end square radius 〈R2
e〉 of a two

dimensional system of living polymers at constant monomer concentration is studied as a function of the
obstacle density ρ. The fact that the system adapts the mean chain length 〈L〉 in order to reduce the
entropic constraint does not lead to a different asymptotic dependence of 〈R2

e〉 on ρ than what is observed
for dead polymers. The change of the molecular weight distribution form in the presence of obstacles
suggests that a Levy flight could appear in system of wormlike micelles in a porous medium.

PACS. 36.20-r Macromolecules and polymer molecules – 82.35+t Polymers reactions and polymerization
– 61.43.Bn Structural modeling: serial-addition models, computer simulation

Introduction

The so-called “living polymers” are systems in which poly-
merization is believed to take place under condition of
chemical equilibrium between the polymers and their re-
spective monomers. These long (one dimensional) aggre-
gates break and recombine reversibly. Therefore, they are
seen as linear macromolecules in equilibrium with respect
to their molecular weight distribution.

A number of examples have been studied, includ-
ing liquid sulfur [1–3] and selenium [4], poly (α-
methylstyrene) [5], polymer-like micelles [6,7] and protein
filaments [8].

Many theoretical works within the mean field approx-
imation describe the dependence of the length and distri-
bution with temperature and concentration [7,9–13] while
others show that reversible aggregation of monomers into
linear polymers exhibits critical phenomena which can be
described by the n → 0 limit of the n-vector model of
magnetism for linear chains [3,14].

Due to experimental difficulties [7] the properties of
living polymers still pose a number of questions. Con-
troversial results about the extent of the growth in mi-
celles with decreasing temperature or rising density are
reported [15–18] and no direct measurements of the molec-
ular weight distribution have been published yet .

Up to now only a small number of simulational stud-
ies [19–28] have been carried out. Indeed, while the con-
nectivity of polymer chains and the resulting slow dy-
namics render computer simulations a demanding task in
its own terms, the scission-recombination processes, which
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are constantly under way in living polymers, impose ad-
ditional problems on computational algorithms.

Until now, most of the computational research was fo-
cused on the transition between an oriented ordered phase
and a disordered state [1,19–24] although numerous static
properties are still unexplained.

At the same time, the behavior of polymers in con-
strained geometry such as polymers in a slit or in random
media has found a growing interest both from a theoreti-
cal and practical point of view and theoretical predictions
have been confirmed by numerical results [29–34].

In the case of living polymers, however, only few works
deal with constrained systems [35,36]. In the present com-
munication, some results on living polymers in a random
medium in two dimension are reported and discussed. For
dead polymers, the simulation of a two dimensional sys-
tem is studied by varying the obstacle density at various
chain length [37–39]. In the case of living polymers, the
chain length is not fixed but both the mean chain length
and the chain length distribution adapt themselves to min-
imize the free energy of the system. The behaviour of a
dead polymer in a random medium made of quenched ob-
stacles depends at high obstacle concentration, but still
below the percolation threshold, only on the density of
obstacles [40,41].

A high obstacle density below the percolation thresh-
old ρc is better found in two dimension since ρc = 0.593
on the square lattice instead of only 0.311 on the cubic
lattice [42].The non-ergodicity of the reptation algorithm,
which may influence the results [38], disappears com-
pletely for living polymers when a non-conserving chain
length procedure is added [43].
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Simulation method

The reader can find a detailed description of the algorithm
in reference [27]. The principal features of the algorithm
are just recalled here for sake of clarity.

Only one monomer at a time may be present on
a lattice site (excluded volume interaction between
monomers). Those sites of the lattice which are not oc-
cupied by monomers or obstacles are considered empty
(vacancies) and contribute to the free volume of the sys-
tem. An energy −V (V > 0) is set for the creation of a
bond between monomers. The value of V/kBT (here set to
7.4, a value found to be optimal in preceding studies [27,
28,35]), in absence of any other type of interaction be-
tween the monomers but the excluded volume interaction,
defines the probability of the creation of a bond.

In the present study the ends of a given polymer chain
are not allowed to bind together. This last condition avoids
the formation of rings [19,20] which gives a different length
distribution for even and odd chain length (in monomer
units) with temperature. This is not really a constraint if
we consider micellar systems in which rings are not likely
to occur [7].

A MCS (Monte-Carlo Step) is organized as follows:
(i) The chains are allowed to perform a reptation move.
(ii) A monomer is chosen at random. If the monomer hap-
pens to be at the end of a chain, an attempt is made
to create a bond with another monomer which might be
present on any one of the four neighboring sites also cho-
sen at random. If the end of another polymer is present on
the chosen neighboring site, the Metropolis algorithm [44]
is applied, that is, a new bond is created if the value of
a random number between 0 and 1 is smaller than Min(
1, exp

(
−V
kBT

))
.

(iii) Finally, a monomer is chosen at random. If a bond
on the right of the current monomer exists, it attempts to
break, also according to the Metropolis rule. During one
MCS one carries out (ii)–(iii) as many times as there are
monomers in the system.

The algorithm was adapted to the simulation of ran-
dom media by forbidding the occupancy of a given fraction
ρ of randomly chosen lattice sites. The start configura-
tion for the monomers is made of randomly distributed
unbounded monomers placed on the lattice once the for-
bidden sites have been generated. The monomer density
was fixed at 0.25 and the obstacle density ρ varied from 0
to 0.65. Hence the density of occupied sites on the lattice
increases with the obstacle concentration. The time relax-
ation in Monte-Carlo steps (MCS) increases strongly at
high value of ρ so that as much as 106 MCS are necessary
to reach equilibrium. Such a relaxation slowing down has
been already observed with different algorithms for living
polymers in slits and stripes [35].

A number of structural properties are sampled during
the simulation by averaging over the various system con-
figurations and different realizations of the porous medium
and randomly distributed monomers at given ρ: mean av-
erage values like the mean average contour length 〈L〉
and the mean average square end-to-end distance 〈R2

e〉

(an average over all the chains) which can be estimated ex-
perimentally, and more precise data, like the distribution
of chain lengths which has not been yet given experimen-
tally. The simulations have been carried out on a 100×100
square lattice with periodic boundary conditions. A snap-
shot of the system is shown in Figure 1.

Brief theoretical summary

At the level of mean-field approximation in the absence of
closed rings, one can write the free energy for a system of
linear chain as:

F

kBT
=
∑
L

c(L, T )

[
ln c(L, T )− (L− 1)

V

kBT

]
(1)

where c(L, T ) is the molecular weight distribution for
chain length L. Minimization of equation (1) with respect
to c(L, T ), subject to the condition:

φ =
∑
L

Lc(L, T ) (2)

with φ the density of the system yields:

c(L, T ) = exp

(
−

(
V

kBT
+ 1

))
exp

(
−
L

〈L〉

)
(3)

〈L〉 =

√
φ

e
exp

(
V

2kBT

)
·

This result should be valid when correlations, brought
about by the mutual avoidance of the chain, are negli-
gible.

In fact, the distribution takes a Schultz-Zimm like form
for L > 1 as suggested by more recent analytical and
numerical works [28,45–47]

c(L, T ) =

(
L

〈L〉

)γ−1

exp

(
−
L

〈L〉

)
· (4)

Some experiments [48] suggest that the distribution can
decay more fastly than in equation (3).

Simulation results

Figures 2 and 3 show the dependence of the mean chain
length 〈L〉 and the mean end to end radius 〈R2

e〉 as a func-
tion of the obstacle density ρ respectively. In this simula-
tion, the number of sites occupied by the polymer units is
kept constant and the effective monomer density, defined
by the fraction of sites occupied by a polymer unit on
available sites (φeff = φ/(1−ρ)), increases with the obsta-
cle concentration. According to equation (3), an increase
of 〈L〉 with increasing ρ would not be at first sight ruled
out [49]. However, the opposite behaviour is observed.
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Fig. 2. Plot of the mean chain length 〈L〉 versus obstacle den-
sity ρ.
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Fig. 3. Plot of the mean end to end square distance 〈R2
e〉

versus obstacle density ρ.

Unlike dead polymers, living polymers can adapt their
size to minimize the perturbation exerted by an imposed
constraint [35,36]: a balance is established between a re-
duction of the entropical energy cost through a decrease
of 〈L〉 and the corresponding loss of bonds.

Hence, in addition to the natural decrease in polymer
size R2

e due to the presence of obstacle for a given contour
length L observed for dead polymers [32–34], a part of this
decrease is induced by the decrease of the mean contour
length 〈L〉. The system does not seem to feel as a high per-
turbation the percolation of the quenched obstacles since
both 〈L〉 and 〈R2

e〉 smoothly change around ρc. This is
quite not surprising if the closed domains formed above
ρc are still rather large. Attempts to study the system far
above the percolation threshold lead to a great fluctuation
of the mean values: the formation of small closed domains
of different monomer densities (see Eq. (3)) gives rise to
this effect.

Figure 4 displays the scaling plot ln(〈R2
e〉) =

f(ln(〈L〉 − 1). Two regimes can be distinguished below
and above a cross-over value of ρ = ρcross ∼ 0.3: For the
greater values of 〈L〉 (low value of ρ), the mean end to
end radius 〈R2

e〉 reaches smoothly and asymptotically the
value of 〈R2

e〉 at ρ = 0. For the smaller values of 〈L〉 cor-
responding to high values of ρ, the curve is a straight line
of slope 1±0.05, an indication that the chains have an al-
most Gaussian behavior. Hence, the predictions made for
Gaussian dead polymers in reference [34] could apply for
living polymers for this range of value of ρ. In the limit
ρ〈L〉 → ∞ the dependence 〈R2

e〉 ∼ ρ−2/(4−d) for d < 4
should be observed. Indeed, the plot of 〈R2

e〉 as a function
of ρ−1 (Fig. 5) displays at low value of ρ−1 a straight line
as awaited.

The molecular weight distribution (MWD) at ρ =
0.495 is shown in Figure 6. Disregarding the particular
value for the chain of one monomer length which needs
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Fig. 4. Scaling plot of the mean end to end square distance
〈R2

e〉 versus mean chain bond number 〈L〉−1.
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Fig. 5. Plot of the mean end to end square distance 〈R2
e〉

versus inverse obstacle density ρ−1.

a specific treatment as in the case of a system without
obstacle [28], the MWD is clearly not a Schultz-Zimm
like distributions but can be fitted by a function of the
form [48,50]

c(L, T ) ∼ L−2σ exp

(
−

l

〈L〉

)
(5)

with 2σ ≈ 0.6 numerically in this present case. Such a
law is common in the physic of clusters: a well known ex-
ample is the cluster size distribution in percolation below
threshold for which σ ≈ 1 [51].

This MWD form deserves some comments. In case of
wormlike micelles moving by a reptation process, such
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Fig. 6. Semi-log plot of the chain length distribution at ρ =
0.495.

kind of distribution leads to the observation of an hy-
perdiffusive behavior of the surfactants [48,50]: the mean

square displacement scales like R2(t) ∼ t2/µ with µ < 2.
Hence, in one hand, the random medium decreases the dif-
fusion of the chains [31,33] but in the other hand modifies
the distribution so that a Levy flight can take place. This
effect should even be enhanced in the random medium
case since the inverse dependence of the chain diffusion
coefficient on chain length is stronger than in the repta-
tion case [33]. These dynamic properties should be stud-
ied numerically with other algorithms (e.g. Bond Fluc-
tuation Model) but it has been shown that such kind of
numerical study implies non trivial difficulties [52] that
are still not solved. Following reference [48], the value of
the exponent σ ≈ 0.3 deduced from the present distri-
bution leads to µ ≈ 1.4 which should be compared to
the experimental values σ ≈ 0.25 and µ ≈ 1.5. We must
however be extremely cautious, the experiment and the
present simulation are not directly comparable in their
form and the value of σ experimentally measured depends
on many physical and chemical parameters. In particular,
the simple relation µ = 2−2σ assumes reptation dynamics
and it is not obvious how this combines with the slower
dynamics attributed to the existence of bottle necks in a
random medium. Nevertheless, we may wonder to what
extent the presence of impurities in solution of wormlike
micelles could favour the apparition of a distribution of
the form of equation (5) and therefrom a Levy flight.

Below ρcross, the living polymers does not follow a sim-
ple scaling behaviour for the dependence of 〈R2

e〉 with
〈L〉 (Fig. 4) as observed with dead polymers [40,41].
When the type of MWD remains the same, the mean
value 〈R2

e〉 and 〈L〉 have the same qualitative dependence,

〈R2
e〉 ∼ 〈L〉

2ν
, as the mean value at fixed contour length

R2
e(L) ∼ L2ν [27]. Hence the change of the MWD form

from equations (4) to (5) can be responsible of this effect.
The comparison of the present work with previous nu-

merical works on dead polymer is not straightforward. In-
stead of Gaussian chains [32,34], self avoiding walk (SAW)
chains are used with an excluded volume interaction be-
tween monomers of the same type than between monomers
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and obstacles. Only one study with dead polymers mod-
elised as SAW’s in a porous medium at various obstacles
density has been made until now [37–39]. The authors see
clearly a reduction of the effective scaling exponent relat-
ing R2

e to L from ν = 0.68 to ν = 0.59 that they suggest
to be due to the collapse of the chain to the pore size.
For their system ν remains always above 1/2 and ρ was
limited to 0.3 so that they may never reached the limit
ρ〈L〉 → ∞.

The value of ν ∼ 0.5 observed at high value of ρ in
this simulation implies, and this is not surprising, that
the obstacles screen the excluded volume interaction be-
tween monomers of the same chain. Even if the concentra-
tion in monomers present is counted as the fraction φeff

of monomers on available sites (φeff = 0.25/(1− ρ)) with
a maximal value of φeff = 0.74 in the present simulation),
previous simulation have never shown [27], although 〈L〉
was greater, an exponent ν of 0.5 for a system with φ < 0.8
in absence of obstacles.

Conclusion

The present simulation gives a short insight of the living
polymers behavior in random media. The dependence of
〈R2

e〉 on ρ is the same as for dead polymers in the limit
ρ〈L〉 → ∞ although the mean contour length 〈L〉 also
varies with ρ. The most important effect of the presence of
obstacle is the modification of the molecular weight distri-
bution shape so that it enables theoretically the presence
of a Levy flight.

I thank Andrey Milchev and Thomas Vilgis for relecture of the
manuscript and the department of Biometrie INRA-Versailles
for computer facilities at the beginning of this study. See also
reference [49].
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